Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Regul Toxicol Pharmacol ; 148: 105579, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309424

RESUMO

Chemical safety assessment begins with defining the lowest level of chemical that alters one or more measured endpoints. This critical effect level, along with factors to account for uncertainty, is used to derive limits for human exposure. In the absence of data regarding the specific mechanisms or biological pathways affected, non-specific endpoints such as body weight and non-target organ weight changes are used to set critical effect levels. Specific apical endpoints such as impaired reproductive function or altered neurodevelopment have also been used to set chemical safety limits; however, in test guidelines designed for specific apical effect(s), concurrently measured non-specific endpoints may be equally or more sensitive than specific endpoints. This means that rather than predicting a specific toxicological response, animal data are often used to develop protective critical effect levels, without assuming the same change would be observed in humans. This manuscript is intended to encourage a rethinking of how adverse chemical effects are interpreted: non-specific endpoints from in vivo toxicological studies data are often used to derive points of departure for use with safety assessment factors to create recommended exposure levels that are broadly protective but not necessarily target-specific.


Assuntos
Testes de Toxicidade , Animais , Humanos , Medição de Risco
2.
Regul Toxicol Pharmacol ; 142: 105426, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37277057

RESUMO

In the European Union, the Chemicals Strategy for Sustainability (CSS) highlights the need to enhance the identification and assessment of substances of concern while reducing animal testing, thus fostering the development and use of New Approach Methodologies (NAMs) such as in silico, in vitro and in chemico. In the United States, the Tox21 strategy aims at shifting toxicological assessments away from traditional animal studies towards target-specific, mechanism-based and biological observations mainly obtained by using NAMs. Many other jurisdictions around the world are also increasing the use of NAMs. Hence, the provision of dedicated non-animal toxicological data and reporting formats as a basis for chemical risk assessment is necessary. Harmonising data reporting is crucial when aiming at re-using and sharing data for chemical risk assessment across jurisdictions. The OECD has developed a series of OECD Harmonised Templates (OHT), which are standard data formats designed for reporting information used for the risk assessment of chemicals relevant to their intrinsic properties, including effects on human health (e.g., toxicokinetics, skin sensitisation, repeated dose toxicity) and the environment (e.g., toxicity to test species and wildlife, biodegradation in soil, metabolism of residues in crops). The objective of this paper is to demonstrate the applicability of the OHT standard format for reporting information under various chemical risk assessment regimes, and to provide users with practical guidance on the use of OHT 201, in particular to report test results on intermediate effects and mechanistic information.


Assuntos
Organização para a Cooperação e Desenvolvimento Econômico , Pele , Humanos , Medição de Risco/métodos
3.
ALTEX ; 39(4): 667-693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36098377

RESUMO

Assessment of potential human health risks associated with environmental and other agents requires careful evaluation of all available and relevant evidence for the agent of interest, including both data-rich and data-poor agents. With the advent of new approach methodologies in toxicological risk assessment, guidance on integrating evidence from mul-tiple evidence streams is needed to ensure that all available data is given due consideration in both qualitative and quantitative risk assessment. The present report summarizes the discussions among academic, government, and private sector participants from North America and Europe in an international workshop convened to explore the development of an evidence-based risk assessment framework, taking into account all available evidence in an appropriate manner in order to arrive at the best possible characterization of potential human health risks and associated uncertainty. Although consensus among workshop participants was not a specific goal, there was general agreement on the key consider-ations involved in evidence-based risk assessment incorporating 21st century science into human health risk assessment. These considerations have been embodied into an overarching prototype framework for evidence integration that will be explored in more depth in a follow-up meeting.


Assuntos
Medição de Risco , Humanos , Europa (Continente)
4.
Arch Toxicol ; 96(11): 2865-2879, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35987941

RESUMO

Robust and efficient processes are needed to establish scientific confidence in new approach methodologies (NAMs) if they are to be considered for regulatory applications. NAMs need to be fit for purpose, reliable and, for the assessment of human health effects, provide information relevant to human biology. They must also be independently reviewed and transparently communicated. Ideally, NAM developers should communicate with stakeholders such as regulators and industry to identify the question(s), and specified purpose that the NAM is intended to address, and the context in which it will be used. Assessment of the biological relevance of the NAM should focus on its alignment with human biology, mechanistic understanding, and ability to provide information that leads to health protective decisions, rather than solely comparing NAM-based chemical testing results with those from traditional animal test methods. However, when NAM results are compared to historical animal test results, the variability observed within animal test method results should be used to inform performance benchmarks. Building on previous efforts, this paper proposes a framework comprising five essential elements to establish scientific confidence in NAMs for regulatory use: fitness for purpose, human biological relevance, technical characterization, data integrity and transparency, and independent review. Universal uptake of this framework would facilitate the timely development and use of NAMs by the international community. While this paper focuses on NAMs for assessing human health effects of pesticides and industrial chemicals, many of the suggested elements are expected to apply to other types of chemicals and to ecotoxicological effect assessments.


Assuntos
Ecotoxicologia , Praguicidas , Animais , Humanos , Projetos de Pesquisa , Medição de Risco
5.
Front Toxicol ; 4: 943152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032790

RESUMO

In the absence of stand-alone one-to-one replacements for existing animal tests, efforts were made to integrate data from in silico, in chemico and in vitro methods to ensure sufficient mechanistic coverage of the skin sensitisation Adverse Outcome Pathway (AOP) and generate predictions suitable for hazard identification and potency sub-categorisation. A number of defined approaches (DAs), using fixed data interpretation procedures (DIP) to integrate data from multiple non-animal information sources, were proposed and documented using a standard reporting template developed by the Organisation for Economic Co-operation and Development (OECD). Subsequent international activities focused on the extensive characterisation of three of these DAs with respect to the reference in vivo data, applicability domains, limitations, predictive performances and characterisations of the level of confidence associated with the predictions. The ultimate product of this project was an OECD Guideline that provides information equivalent to that provided by the animal studies and that can be used to satisfy countries' regulatory data requirements for skin sensitisation. This Defined Approach Guideline was the first of its kind for the OECD, and provides an important precedent for regulatory adoption of human biology-relevant new approach methodologies with performances equivalent to, or better than, traditional animal tests. This mini review summarizes the principal features of the defined approaches described in OECD guideline 497.

7.
ALTEX ; 38(2): 336-347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33837437

RESUMO

The workshop "Application of evidence-based methods to construct mechanistic frameworks for the development and use of non-animal toxicity tests" was organized by the Evidence-based Toxicology Collaboration and hosted by the Grading of Recommendations Assessment, Development and Evaluation Working Group on June 12, 2019. The purpose of the workshop was to bring together international regulatory bodies, risk assessors, academic scientists, and industry to explore how systematic review methods and the adverse outcome pathway framework could be combined to develop and use mechanistic test methods for predicting the toxicity of chemical substances in an evidence-based manner. The meeting covered the history of biological frameworks, the way adverse outcome pathways are currently developed, the basic principles of systematic methodology, including systematic reviews and evidence maps, and assessment of cer­tainty in models, and adverse outcome pathways in particular. Specific topics were discussed via case studies in small break-out groups. The group concluded that adverse outcome pathways provide an important framework to support mechanism-based assessment in environmental health. The process of their development has a few challenges that could be addressed with systematic methods and automation tools. Addressing these challenges will increase the transparency of the evidence behind adverse outcome pathways and the consistency with which they are defined; this in turn will increase their value for supporting public health decisions. It was suggested to explore the details of applying systematic methods to adverse outcome pathway development in a series of case studies and workshops.


Assuntos
Rotas de Resultados Adversos , Projetos de Pesquisa , Testes de Toxicidade
8.
Food Chem Toxicol ; 152: 112206, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33887398

RESUMO

We describe the characterisation and validation of an androgen receptor (AR) transactivation assay for detection of AR agonists and antagonists using a stably transfected human prostate cancer cell line. This 22Rv1/mouse mammary tumour virus glucocorticoid knock-out cell line based AR transactivation assay was validated by criteria in Organisation for Economic Cooperation and Development Guidance Document 34 to determine if the assay performed equally well to the AR EcoScreen Assay included in Test Guideline for AR Transactivation (OECD TG 458). There was no Glucocorticoid Receptor (GR) crosstalk, and no changes in the AR DNA sequence in cells after the successful knock out of GR. Subsequently, the concordance of classifications of the 22 test chemicals was 100% in all laboratories. The AR agonistic and antagonistic inter-laboratory coefficients of variation based on log[10% effect for 10 nM DHT, PC10] and log[inhibitory response of 800 pM DHT by at 30%, IC30] from comprehensive tests were 2.75% and 2.44%, respectively. The AR agonist/antagonist test chemical classifications were consistent across AR EcoScreen ARTA assay data for 82/89%, and the balanced accuracy, sensitivity, and specificity were 83/90%, 88/100% and 78/80%, respectively. This assay was successfully validated and was approved for inclusion in TG 458 in 2020.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Receptores Androgênicos/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Humanos , Vírus do Tumor Mamário do Camundongo , Camundongos , Receptores de Glucocorticoides/deficiência , Receptores de Glucocorticoides/genética , Reprodutibilidade dos Testes , Ativação Transcricional/efeitos dos fármacos
9.
Regul Toxicol Pharmacol ; 117: 104764, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798611

RESUMO

Screening certain environmental chemicals for their ability to interact with endocrine targets, including the androgen receptor (AR), is an important global concern. We previously developed a model using a battery of eleven in vitro AR assays to predict in vivo AR activity. Here we describe a revised mathematical modeling approach that also incorporates data from newly available assays and demonstrate that subsets of assays can provide close to the same level of predictivity. These subset models are evaluated against the full model using 1820 chemicals, as well as in vitro and in vivo reference chemicals from the literature. Agonist batteries of as few as six assays and antagonist batteries of as few as five assays can yield balanced accuracies of 95% or better relative to the full model. Balanced accuracy for predicting reference chemicals is 100%. An approach is outlined for researchers to develop their own subset batteries to accurately detect AR activity using assays that map to the pathway of key molecular and cellular events involved in chemical-mediated AR activation and transcriptional activity. This work indicates in vitro bioactivity and in silico predictions that map to the AR pathway could be used in an integrated approach to testing and assessment for identifying chemicals that interact directly with the mammalian AR.


Assuntos
Antagonistas de Receptores de Andrógenos/toxicidade , Androgênios/toxicidade , Substâncias Perigosas/toxicidade , Modelos Teóricos , Receptores Androgênicos , Antagonistas de Receptores de Andrógenos/metabolismo , Androgênios/metabolismo , Animais , Exposição Ambiental/prevenção & controle , Exposição Ambiental/estatística & dados numéricos , Substâncias Perigosas/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Receptores Androgênicos/metabolismo
10.
J Natl Cancer Inst ; 112(1): 30-37, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498409

RESUMO

The Monographs produced by the International Agency for Research on Cancer (IARC) apply rigorous procedures for the scientific review and evaluation of carcinogenic hazards by independent experts. The Preamble to the IARC Monographs, which outlines these procedures, was updated in 2019, following recommendations of a 2018 expert advisory group. This article presents the key features of the updated Preamble, a major milestone that will enable IARC to take advantage of recent scientific and procedural advances made during the 12 years since the last Preamble amendments. The updated Preamble formalizes important developments already being pioneered in the Monographs program. These developments were taken forward in a clarified and strengthened process for identifying, reviewing, evaluating, and integrating evidence to identify causes of human cancer. The advancements adopted include the strengthening of systematic review methodologies; greater emphasis on mechanistic evidence, based on key characteristics of carcinogens; greater consideration of quality and informativeness in the critical evaluation of epidemiological studies, including their exposure assessment methods; improved harmonization of evaluation criteria for the different evidence streams; and a single-step process of integrating evidence on cancer in humans, cancer in experimental animals, and mechanisms for reaching overall evaluations. In all, the updated Preamble underpins a stronger and more transparent method for the identification of carcinogenic hazards, the essential first step in cancer prevention.


Assuntos
Carcinógenos/antagonistas & inibidores , Neoplasias/prevenção & controle , Animais , Humanos , Agências Internacionais/organização & administração , Motivação , Avaliação de Programas e Projetos de Saúde , Vigilância em Saúde Pública
11.
Nat Rev Endocrinol ; 16(1): 45-57, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31719706

RESUMO

Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with hormone action, thereby increasing the risk of adverse health outcomes, including cancer, reproductive impairment, cognitive deficits and obesity. A complex literature of mechanistic studies provides evidence on the hazards of EDC exposure, yet there is no widely accepted systematic method to integrate these data to help identify EDC hazards. Inspired by work to improve hazard identification of carcinogens using key characteristics (KCs), we have developed ten KCs of EDCs based on our knowledge of hormone actions and EDC effects. In this Expert Consensus Statement, we describe the logic by which these KCs are identified and the assays that could be used to assess several of these KCs. We reflect on how these ten KCs can be used to identify, organize and utilize mechanistic data when evaluating chemicals as EDCs, and we use diethylstilbestrol, bisphenol A and perchlorate as examples to illustrate this approach.


Assuntos
Consenso , Disruptores Endócrinos/efeitos adversos , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Animais , Exposição Ambiental/prevenção & controle , Poluentes Ambientais/metabolismo , Humanos , Receptores da Corticotropina/metabolismo
12.
Mol Cell Endocrinol ; 504: 110675, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31830512

RESUMO

Identifying the potential endocrine disruptor hazard of environmental chemicals is a regulatory mandate for many countries. However, due to the adaptive nature of the endocrine system, absence of a single method capable of identifying endocrine disruption, and the latency between exposure to endocrine disrupting chemical during sensitive life stages and the manifestation of adverse responses, satisfying the regulatory requirement needed to identify a chemical as an endocrine disruptor is a challenge. There are now a variety of validated regulatory tests that can be used in combination to provide evidence that a chemical affects the oestrogen, androgen, thyroid, and steroidogenic pathways of vertebrates, but most rely (at least to some extent) on animal testing and require considerable cost and time to produce the necessary data. Emerging research methods are able to evaluate other endocrine pathways, incorporate more sensitive endpoints, and combine multiple alternative methods to predict in vivo outcomes. Some research approaches may also bridge gaps that have been identified in current endocrine regulatory testing. For the near term, considering new endpoints in a regulatory context may require adding them to existing test methods in order to establish relationships between the traditional and the innovative. From the outset, endocrine testing has always required integration of multiple methods that provide data on different levels of biological organisation, thus, the area of endocrine disruption is particularly adaptable to adverse outcome pathway (AOP) frameworks and integrated test methods built around AOPs. Herein, we provide a review of the status of endocrine disruptors in the OECD context, examples where innovation from research is needed to improve or bridge gaps in endocrine testing, and suggestions for regulators and researchers to facilitate uptake of innovate methods for endocrine disruptor regulatory testing. The increase in several human complex human disorders that include an endocrine component and the alarming decrease in wildlife biodiversity are commanding directives to include the best, most informative, innovative approaches to accelerate the rate and throughput of chemical evaluation for endocrine disruption.


Assuntos
Conservação dos Recursos Naturais/métodos , Avaliação de Medicamentos/normas , Disruptores Endócrinos/farmacologia , Guias de Prática Clínica como Assunto , Sociedades Científicas/normas , Conservação dos Recursos Naturais/legislação & jurisprudência , Avaliação de Medicamentos/legislação & jurisprudência , Avaliação de Medicamentos/métodos , Disruptores Endócrinos/isolamento & purificação , Humanos , Sociedades Científicas/organização & administração
13.
Environ Health Perspect ; 127(9): 95001, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31487205

RESUMO

BACKGROUND: Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES: We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION: There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.


Assuntos
Rotas de Resultados Adversos , Poluentes Ambientais/toxicidade , Glândula Tireoide/efeitos dos fármacos , Animais , Bioensaio , Humanos , Hormônios Tireóideos
14.
Integr Environ Assess Manag ; 15(4): 633-647, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30908812

RESUMO

There have been increasing demands for chemical hazard and risk assessments in recent years. Chemical companies have expanded internal product stewardship initiatives, and jurisdictions have increased the regulatory requirements for the manufacture and sale of chemicals. There has also been a shift in chemical toxicity evaluations within the same time frame, with new methodologies being developed to improve chemical safety assessments for both human health and the environment. With increased needs for chemical assessments coupled with more diverse data streams from new technologies, regulators and others tasked with chemical management activities are faced with increasing workloads and more diverse types of data to consider. The Adverse Outcome Pathway (AOP) framework can be applied in different scenarios to integrate data and guide chemical assessment and management activities. In this paper, scenarios of how AOPs can be used to guide chemical management decisions during research and development, chemical registration, and subsequent regulatory activities such as prioritization and risk assessment are considered. Furthermore, specific criteria (e.g., the type and level of AOP complexity, confidence in the AOP, as well as external review and assay validation) are proposed to examine whether AOPs and associated tools are fit for purpose when applied in different contexts. Certain toxicity pathways are recommended as priority areas for AOP research and development, and the continued use of AOPs and defined approaches in regulatory activities are recommended. Furthermore, a call for increased outreach, education, and enhanced use of AOP databases is proposed to increase their utility in chemicals management. Integr Environ Assess Manag 2019;15:633-647. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Rotas de Resultados Adversos/estatística & dados numéricos , Ecotoxicologia/métodos , Política Ambiental/legislação & jurisprudência , Regulamentação Governamental , Substâncias Perigosas , Bases de Dados Factuais/estatística & dados numéricos , Tomada de Decisões , Humanos , Medição de Risco/métodos
15.
Toxicol In Vitro ; 47: 103-119, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29146384

RESUMO

The Endocrine Disruptor Screening Program (EDSP) is transitioning from traditional testing methods to integrating ToxCast/Tox21 in vitro high-throughput screening assays for identifying chemicals with endocrine bioactivity. The ToxCast high-throughput H295R steroidogenesis assay may potentially replace the low-throughput assays currently used in the EDSP Tier 1 battery to detect chemicals that alter the synthesis of androgens and estrogens. Herein, we describe an approach for identifying in vitro candidate reference chemicals that affect the production of androgens and estrogens in models of steroidogenesis. Candidate reference chemicals were identified from a review of H295R and gonad-derived in vitro assays used in methods validation and published in the scientific literature. A total of 29 chemicals affecting androgen and estrogen levels satisfied all criteria for positive reference chemicals, while an additional set of 21 and 15 chemicals partially fulfilled criteria for positive reference chemicals for androgens and estrogens, respectively. The identified chemicals included pesticides, pharmaceuticals, industrial and naturally-occurring chemicals with the capability to increase or decrease the levels of the sex hormones in vitro. Additionally, 14 and 15 compounds were identified as potential negative reference chemicals for effects on androgens and estrogens, respectively. These candidate reference chemicals will be informative for performance-based validation of in vitro steroidogenesis models.


Assuntos
Corticosteroides/biossíntese , Córtex Suprarrenal/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Estradiol/biossíntese , Ovário/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testosterona/biossíntese , Córtex Suprarrenal/citologia , Córtex Suprarrenal/metabolismo , Corticosteroides/agonistas , Corticosteroides/antagonistas & inibidores , Corticosteroides/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Disruptores Endócrinos/normas , Estradiol/agonistas , Estradiol/química , Estradiol/metabolismo , Feminino , Guias como Assunto , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Concentração Osmolar , Ovário/citologia , Ovário/metabolismo , Padrões de Referência , Bibliotecas de Moléculas Pequenas , Testículo/citologia , Testículo/metabolismo , Testosterona/agonistas , Testosterona/antagonistas & inibidores , Testosterona/metabolismo , Testes de Toxicidade Aguda/métodos , Testes de Toxicidade Aguda/normas , Estudos de Validação como Assunto
16.
Environ Health Perspect ; 125(9): 096001, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28934726

RESUMO

BACKGROUND: The U.S. EPA's Endocrine Disruptor Screening Program (EDSP) screens and tests environmental chemicals for potential effects in estrogen, androgen, and thyroid hormone pathways, and it is one of the only regulatory programs designed around chemical mode of action. OBJECTIVES: This review describes the EDSP's use of adverse outcome pathway (AOP) and toxicity pathway frameworks to organize and integrate diverse biological data for evaluating the endocrine activity of chemicals. Using these frameworks helps to establish biologically plausible links between endocrine mechanisms and apical responses when those end points are not measured in the same assay. RESULTS: Pathway frameworks can facilitate a weight of evidence determination of a chemical's potential endocrine activity, identify data gaps, aid study design, direct assay development, and guide testing strategies. Pathway frameworks also can be used to evaluate the performance of computational approaches as alternatives for low-throughput and animal-based assays and predict downstream key events. In cases where computational methods can be validated based on performance, they may be considered as alternatives to specific assays or end points. CONCLUSIONS: A variety of biological systems affect apical end points used in regulatory risk assessments, and without mechanistic data, an endocrine mode of action cannot be determined. Because the EDSP was designed to consider mode of action, toxicity pathway and AOP concepts are a natural fit. Pathway frameworks have diverse applications to endocrine screening and testing. An estrogen pathway example is presented, and similar approaches are being used to evaluate alternative methods and develop predictive models for androgen and thyroid pathways. https://doi.org/10.1289/EHP1304.


Assuntos
Disruptores Endócrinos/toxicidade , Testes de Toxicidade/métodos , United States Environmental Protection Agency , Bioensaio , Programas Governamentais , Testes de Toxicidade/normas , Estados Unidos
18.
Chem Res Toxicol ; 30(4): 946-964, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-27933809

RESUMO

Testing thousands of chemicals to identify potential androgen receptor (AR) agonists or antagonists would cost millions of dollars and take decades to complete using current validated methods. High-throughput in vitro screening (HTS) and computational toxicology approaches can more rapidly and inexpensively identify potential androgen-active chemicals. We integrated 11 HTS ToxCast/Tox21 in vitro assays into a computational network model to distinguish true AR pathway activity from technology-specific assay interference. The in vitro HTS assays probed perturbations of the AR pathway at multiple points (receptor binding, coregulator recruitment, gene transcription, and protein production) and multiple cell types. Confirmatory in vitro antagonist assay data and cytotoxicity information were used as additional flags for potential nonspecific activity. Validating such alternative testing strategies requires high-quality reference data. We compiled 158 putative androgen-active and -inactive chemicals from a combination of international test method validation efforts and semiautomated systematic literature reviews. Detailed in vitro assay information and results were compiled into a single database using a standardized ontology. Reference chemical concentrations that activated or inhibited AR pathway activity were identified to establish a range of potencies with reproducible reference chemical results. Comparison with existing Tier 1 AR binding data from the U.S. EPA Endocrine Disruptor Screening Program revealed that the model identified binders at relevant test concentrations (<100 µM) and was more sensitive to antagonist activity. The AR pathway model based on the ToxCast/Tox21 assays had balanced accuracies of 95.2% for agonist (n = 29) and 97.5% for antagonist (n = 28) reference chemicals. Out of 1855 chemicals screened in the AR pathway model, 220 chemicals demonstrated AR agonist or antagonist activity and an additional 174 chemicals were predicted to have potential weak AR pathway activity.


Assuntos
Antagonistas de Receptores de Andrógenos/metabolismo , Androgênios/metabolismo , Modelos Teóricos , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/química , Androgênios/farmacologia , Área Sob a Curva , Ensaios de Triagem em Larga Escala , Humanos , Ligação Proteica , Curva ROC , Receptores Androgênicos/química , Receptores Androgênicos/genética , Ativação Transcricional/efeitos dos fármacos
19.
Reprod Toxicol ; 65: 402-413, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27589887

RESUMO

Reference chemicals were selected based on thyroid bioactivity in 'Tier 1' screening assays used by the U.S. EPA's Endocrine Disruptor Screening Program. Active reference chemicals had significant effects on thyroid-responsive endpoints in the amphibian metamorphosis assay, and the male and female pubertal rat assays. In the absence of thyroid weight or histopathological effects, additional published studies providing mechanistic data on thyroid activity were required for active chemicals. Inactive reference chemicals had no significant effects on thyroid-responsive endpoints in Tier 1 assays, or in amphibian or rodent studies from several online databases. The 34 reference chemicals (29 active and five inactive) will be useful for performance-based validation of alternative, high throughput screening assays for thyroid bioactivity.


Assuntos
Bioensaio/normas , Disruptores Endócrinos/normas , Ensaios de Triagem em Larga Escala/normas , Glândula Tireoide/efeitos dos fármacos , Animais , Disruptores Endócrinos/toxicidade , Humanos
20.
Chem Res Toxicol ; 29(9): 1410-27, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27509301

RESUMO

The US Environmental Protection Agency's (EPA) Endocrine Disruptor Screening Program (EDSP) is using in vitro data generated from ToxCast/Tox21 high-throughput screening assays to assess the endocrine activity of environmental chemicals. Considering that in vitro assays may have limited metabolic capacity, inactive chemicals that are biotransformed into metabolites with endocrine bioactivity may be missed for further screening and testing. Therefore, there is a value in developing novel approaches to account for metabolism and endocrine activity of both parent chemicals and their associated metabolites. We used commercially available software to predict metabolites of 50 parent compounds, out of which 38 chemicals are known to have estrogenic metabolites, and 12 compounds and their metabolites are negative for estrogenic activity. Three ER QSAR models were used to determine potential estrogen bioactivity of the parent compounds and predicted metabolites, the outputs of the models were averaged, and the chemicals were then ranked based on the total estrogenicity of the parent chemical and metabolites. The metabolite prediction software correctly identified known estrogenic metabolites for 26 out of 27 parent chemicals with associated metabolite data, and 39 out of 46 estrogenic metabolites were predicted as potential biotransformation products derived from the parent chemical. The QSAR models estimated stronger estrogenic activity for the majority of the known estrogenic metabolites compared to their parent chemicals. Finally, the three models identified a similar set of parent compounds as top ranked chemicals based on the estrogenicity of putative metabolites. This proposed in silico approach is an inexpensive and rapid strategy for the detection of chemicals with estrogenic metabolites and may reduce potential false negative results from in vitro assays.


Assuntos
Simulação por Computador , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Estrogênios/química , Bases de Dados como Assunto , Disruptores Endócrinos/química , Disruptores Endócrinos/metabolismo , Poluentes Ambientais/metabolismo , Previsões , Humanos , Relação Quantitativa Estrutura-Atividade , Estados Unidos , United States Environmental Protection Agency
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...